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1. Introduction

Figure 1. Photo of the vase (Student’s own work) 

In my free time, I enjoy refurbishing old, and dull objects that surround me and otherwise 

would be thrown away. It includes old wooden furniture and a variety of decorations made of 

different materials. This hobby complies with the idea of a circular system that I developed 

during my geography lessons which places importance on reusing and recycling things and 

resources. I am also a provident person who does not like it when something is wasted, 

therefore I always try to minimize the costs and loss of resources. My next project involves 

painting a glass vase presented in Figure 1. that, in my opinion, is dull and would look definitely 

more interesting with a vibrant finish. I opt in using the acrylic enamel which ensures the long-

lasting of the final product so that it will serve longer and it complies with my eco-friendly 

attitude. However, this paint is very expensive and I would like to calculate the surface area of 

the vase to evaluate whether it is a viable option or I should choose another slightly cheaper 

alternative. In order to estimate the cost of the project, I will use the paint coverage parameter, 

that is “amount of paint that will cover a given surface” (Nerolac, 2022). Unfortunately, there 
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is no paint coverage data available for that type of paint. Therefore, I decided to assume the 

average paint coverage of high-performance acrylic emulsion, which is 9 m2/l because it has 

similar nature to the acrylic enamel (Paint Coverage Rates, n.d.). No matter what paint I will 

decide to use, I hope to discover a method for calculating the lateral surface area of any solid 

of revolution, that could be useful in the industry on a mass scale where even small differences 

in cost have a much greater effect. 

2. Background information and methodology

For the sake of the investigation, I will assume that my vase is a perfect volume of revolution. 

Even though it is not in the reality, this approximation will allow me to calculate the surface 

area which is similar to the real surface area of the vase. 

As an extension to the integral calculus, during math HL lessons, we have been familiarized 

with the concept of calculating the volume of solid produced by the revolution of the function, 

y about the x-axis in the interval [a, b]. We performed it according to the formula in the booklet, 

that is: 

𝑉 = ∫ 𝜋𝑦2 𝑑𝑥
𝑏

𝑎

This formula can be derived from the Riemann sum which enables, among other applications, 

to approximate the area between continuous function and x-axis in the interval [a,b] by adding 

the areas of rectangles of equal width under the curve. As the number of these rectangles 

approaches infinity, they become infinitesimally thin and the Riemann integral is obtained 

which enables to calculate the real area under the curve in this interval. Then the area contained 

by the curve and x-axis in the interval [a, b] can be rotated by 2𝜋 radians around the x-axis to 

obtain the volume of solid of revolution. It should be noted that from the perspective of each 

infinitesimally thin cylinder which adds up to the volume of revolution, the slope of the curve 

is not taken into account because it has a negligible effect. 
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However, when it comes to calculating the lateral surface area of solid of revolution the slope 

of the curve has a significant effect on the final result, that is why frustum of a cone, instead of 

a cylinder must be introduced.  

Each frustum is created by taking a trapezoid, with the same width ∆𝑥 for all trapezoids, and 

rotating it around the x-axis. Down below in, Figure 2. I included the superimposed picture of 

vase with 4 trapezoids of the same width, ∆𝑥 and different colors modeled onto the object. If 

they were rotated 2𝜋 times around the x-axis, 4 frustums would be created. It is clearly visible 

that the number of frustums is too small since the solid produced would merely imitate the 

vase. Therefore, infinite number of frustums should be used in calculation of the surface area. 

Note: All the graphs in the work were produced in Geogebra (Hohenwarter & et al., 2016). 

Figure 1. Vase with four 2D plotted frustums. 

I will start deriving the formula for the lateral surface area of solid of revolution with the 

formula for lateral surface area of a frustum of a cone, Af which is: 

𝐴𝑓 = 𝜋(𝑅 + 𝑟)𝑙

Where: R is the radius of the bottom base, r is the radius of top base, and l is the slant height. 
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In Figure 3. I included frustum modeled on interval [𝑥𝑓−1, 𝑥𝑓] of the continuous function

produced by rotating the trapezoid described within points A and B, about the x-axis. Where 

points A and B lie on 𝑓(𝑥). It was performed to apply the formula for lateral surface area of 

frustum onto the function. I denote the lateral surface area of this frustum as Ab. 

Figure 3. Frustum modelled onto the graph of continuous function. 

Variables R and r are then substituted with corresponding y values on the graph, that is 𝑓(𝑥𝑓)

and 𝑓(𝑥𝑓−1), respectively. As a result, we get 𝐴𝑏:

𝐴𝑏 = 𝜋(𝑓(𝑥𝑓) + 𝑓(𝑥𝑓−1))𝑙

Where: l is slant height, ∆𝑥 is the height of frustum ∆𝑦𝑓 is the variable displayed in Figure 3.

which changes depending on where on the graph, frustum is formed. In order to express slant 

height in terms of ∆𝑥 and ∆𝑦𝑓, the Pythagorean Theorem is used:

𝑙2 = ∆𝑥2 + ∆𝑦𝑓
2

Then, take the square root of both sides. Since the l is a length, only positive root is considered: 

𝑙 = √∆𝑥2 + ∆𝑦𝑓
2

Factor out and take the square root of ∆𝑥: 

𝐴 = (𝑥𝑓−1, 𝑓(𝑥𝑓−1)) 

𝐵 = (𝑥𝑓, 𝑓(𝑥𝑓)) 

∆𝑦𝑓 

∆𝑥 

𝑙 
x 

y 

z 
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𝑙 = √∆𝑥2 (1 +
∆𝑦𝑓

2

∆𝑥2
) 

= √1 + (
∆𝑦𝑓

∆𝑥
)

2

∆𝑥

The mean value theorem states that “if 𝑓 is continuous over the closed interval [𝑎, 𝑏] and 

differentiable over the open interval (𝑎, 𝑏), then there exists a point 𝑐 ∈ (𝑎, 𝑏) such that the 

tangent line to the graph of 𝑓 at c is parallel to the secant line connecting (𝑎, 𝑓(𝑎)) and 

(𝑏, 𝑓(𝑏))" (OpenStaxCollege, 2016). According to this theorem, tangent and secant line are 

parallel, therefore their gradients are equal.  It can be applied in the expression for slant height 

by substituting the gradient of secant line, that is slant height with the gradient of tangent to 

point 𝑥𝑎:

𝑙 =  √1 + (𝑓′(𝑥𝑎))2∆𝑥

The implication of applying the mean value theorem is that only the continuous functions in 

the interval [a, b] and differentiable over the interval (a, b) will satisfy the requirements to be 

inserted into the future formula for surface of revolution.  

As such, the expression for slant height of frustum of cone can be substituted into the formula 

for Ab: 

𝐴𝑏 = 𝜋(𝑓(𝑥𝑓) + 𝑓(𝑥𝑓−1))√1 + (𝑓′(𝑥𝑎))2∆𝑥

In order to link 𝑓(𝑥𝑓) and 𝑓(𝑥𝑓−1) together I will apply the intermediate value theorem. It

states that if 𝑓(𝑥) is continuous over the closed interval [𝑎, 𝑏], then there is point 𝑥𝑏, such that

𝑎 ≤ 𝑥𝑏 ≤ 𝑏 and 𝑓(𝑥𝑏) = 𝑦𝑏. Where 𝑦𝑏 ∈ [𝑓(𝑎), 𝑓(𝑏)] (Bazett, 2017). According to the

intermediate value theorem, as long as the function 𝑓(𝑥) is continuous, there is a point  𝑥𝑏 such

that: 

𝑓(𝑥𝑏) =
1

2
[𝑓(𝑥𝑓) + 𝑓(𝑥𝑓−1)]

By simple algebraic transformation: 
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𝑓(𝑥𝑓) + 𝑓(𝑥𝑓−1) = 2𝑓(𝑥𝑏)

By substitution it can be introduced into the previous formula: 

𝐴𝑏 = 2𝜋𝑓(𝑥𝑏)√1 + (𝑓′(𝑥𝑎))2∆𝑥

As a result, from the sum of surface areas of frustums the approximate lateral surface area of 

the solid of revolution, 𝐴 can be calculated: 

𝐴 ≈ ∑ 2𝜋𝑓(𝑥𝑏)√1 + (𝑓′(𝑥𝑎))2∆𝑥

𝑛

𝑖=1

As 𝑛 → ∞ , the approximation becomes more and more similar to the real surface area of the 

solid of revolution. Since I recognized it as a Riemann sum, it can be expressed and a definite 

integral: 

𝐴 = lim
𝑛→∞

∑ 2𝜋𝑓(𝑥𝑏)√1 + (𝑓′(𝑥𝑎))
2

∆𝑥 = ∫ 2𝜋𝑓(𝑥𝑏)√1 + (𝑓′(𝑥𝑎))
2

𝑑𝑥
𝑏

𝑎

𝑛

𝑖=1

Since 𝑓(𝑥) is continuous, as 𝑛 → ∞, ∆𝑥 becomes infinitesimally small, thus 𝑓(𝑥𝑏) = 𝑓(𝑥)

and s 𝑓(𝑥𝑎) = 𝑓(𝑥). Therefore:

𝐴 = ∫ 2𝜋𝑓(𝑥)√1 + (𝑓′(𝑥))
2

𝑑𝑥
𝑏

𝑎

3. Graphing the vase

I have already derived the formula for the lateral surface area of solid of revolution. To apply 

it and calculate the surface area of the vase, I have to create functions that will graph half of 

the vase.  

Firstly, I zoomed in the vase with the lens and took the photo from a relatively long distance to 

reduce the effect of perspective. Then I measured the height of the vase by putting it upright 

on the table and using a ruler. To measure the circumference, I used inelastic string and coiled 

it around the bottom of the base. However, I noticed that the string kept sliding off and the 

measurement would be inaccurate. Therefore, I decided to measure the circumference at point 
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„G”, labelled in the Figure 4. since it is a narrowing in the structure and the string do not slide. 

The last step involved measuring the height at which point „G” occurs. Results are presented 

in Table 1. 

Table 1. Measurements of the vase. 

Height (cm) Circumference at point G (cm) Height of point G (cm) 

17.10 19.00 5.00 

Since the vase is a solid of revolution, in order to obtain the radius at point G, the formula for 

the circumference of circle was used: 

𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑐𝑖𝑟𝑐𝑙𝑒 = 2𝜋𝑟 

𝑟 =
𝐶𝑖𝑟𝑐𝑢𝑚𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑐𝑖𝑟𝑐𝑙𝑒

2𝜋

Now, the radius can be calculated: 

𝑟 =
19.00

2𝜋
≈ 3.024 (4 𝑠. 𝑓. ) 

In order to position the vase accurately on the graph, points from height and radius data were 

produced and plotted onto the graph. Their coordinates are presented in Table 2. 

Table 2. Coordinates of G and J. 

 x y 

G 5.00 3.024 

J 17.10 0 

The opacity of vase image was reduced in order to make the grid behind the image visible. 

Then the picture was scaled and shifted so that it most accurately fit points „G” and „J”. As a 

result, it enabled creating other points digitally, to reduce the margin of human error, with 

coordinates in centimeters. 

Coordinates 
Point 
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It was a dilemma for me how to describe the vase using the functions. On one hand, I could 

produce a single polynomial function describing the whole half-contour of the vase. On the 

other hand, I could divide the vase into regions and find the functions fitting into the 

corresponding regions. After some research, I learned that even though, the higher number of 

data points used to produce higher-degree polynomial ensures that the function passes perfectly 

through them, it does not ensure that the function between these data points will resemble the 

shape it is supposed to describe (Branden & Weisstein, n.d.). The first argument for using 

distinct functions is the fact that the part of the vase is a frustum and it is possible to accurately 

calculate its surface area using a linear function. An argument against producing single 

polynomial function is that it would involve many points, and the calculation would be a lot 

more complex where the accuracy of fit would not be ensured and the potential risk of human 

error involved in calculations would be higher. To conclude, I decided to divide the vase into 

regions and describe those partial shapes using different functions. 

In order to accurately describe the vase in terms of mathematical functions, I have created total 

of 9 points. Their location was determined so that they would act as potential minimum / 

maximum points or points of inflexion. Their x-coordinates and y-coordinates are given in the 

Table 3. and their positions on the graph are depicted in Figure 4. I approximated that three 

functions going through these points will give an accurate outline of the vase. Then I 

highlighted their domains using three colors: green, orange and violet.  
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Figure 4. Points plotted onto the graph with superimposed image of the vase and three domains 

indicated by different colors. 

Table 3. Coordinates of ten points plotted onto the graph. 

A B C D E F G H I

x 0 0.679 1.53 1.93 3.19 4.38 5.00 11.0 17.1 

y 4.560 5.00 4.09 3.76 3.84 3.53 3.024 3.96 4.98 

4. Determining functions

Based on the Figure 4. I evaluate that the first two functions in green and orange regions will 

be polynomial. Interpolation is a method for determining function of x based on the known 

values of the function (The Editors of Encyclopaedia Britannica, 2016).  In order to find these 

two functions, I will utilize Lagrange’s Interpolation Formula which can be used even if the 

points are at unequal intervals from each other. The formula to calculate a polynomial 𝑔(𝑥) is 

as follows: 

Coordinates 
Point

244
726

A 
B 

C 
D E F

G 

H 

I 

J 
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𝑔(𝑥) =
(𝑥 − 𝑥2)(𝑥 − 𝑥3) … (𝑥 − 𝑥𝑛)

(𝑥1 − 𝑥2)(𝑥1 − 𝑥3) … (𝑥1 − 𝑥𝑛)
𝑦1 +

(𝑥 − 𝑥1)(𝑥 − 𝑥3) … (𝑥 − 𝑥𝑛)

(𝑥2 − 𝑥1)(𝑥2 − 𝑥3) … (𝑥2 − 𝑥𝑛)
𝑦2 + ⋯

+
(𝑥 − 𝑥1)(𝑥 − 𝑥2) … (𝑥 − 𝑥𝑛−1)

(𝑥𝑛 − 𝑥1)(𝑥𝑛 − 𝑥2) … (𝑥𝑛 − 𝑥𝑛−1)
𝑦𝑛

Where: Degree of function ≤ (𝑛 − 1) and 𝑔(𝑥) passes through n points: (𝑥1, 𝑦1 =

𝑓(𝑥1)), (𝑥2, 𝑦2 = 𝑓(𝑥2)), … , (𝑥𝑛, 𝑦𝑛 = 𝑓(𝑥𝑛)) (Branden & Weisstein, n.d.).

Note: The calculator available at website: https://planetcalc.com/8680/ was used to compute 

the results. 

The function in the violet region produced from points H and I will be calculated using gradient 

formula and equation of a straight line, which are respectively: 

𝑚 =
𝑦2 − 𝑦1

𝑥2 − 𝑥1

𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1)

4.1. Bottom section 

In this part I will find function for the bottom section of the vase with the domain indicated by 

green color in Figure 4. Based on the shape of the curve of the vase it appears that it is a 

concave-down quadratic function with maximum point around point B (0.679, 5.00). Even 

though if one more point was determined and the cubic function were created, it would not 

guarantee a better fit with the shape as I outlined previously. Also, the calculation would be 

longer and the probability of human error would increase. I denote the function of the bottom 

section as 𝑔𝐼(𝑥). I will calculate 𝑔𝐼(𝑥) using Lagrange’s Interpolation Formula from three data

points shown below: 

Table 4. Coordinates of points: A, B and C. 

 x y 

A 0 4.560 

B 0.679 5.00 

Coordinates 
Point 
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C 1.53 4.09 

Therefore when function 𝑔1(𝑥) passes through 3 points (0, 4.560), (0.679, 5.00), (1.53, 4.09),

its formula is: 

𝑔𝐼(𝑥) =
(𝑥 − 𝑥2)(𝑥 − 𝑥3)

(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)
𝑦1 +

(𝑥 − 𝑥1)(𝑥 − 𝑥3)

(𝑥2 − 𝑥1)(𝑥2 − 𝑥3)
𝑦2 +

(𝑥 − 𝑥1)(𝑥 − 𝑥2)

(𝑥3 − 𝑥1)(𝑥3 − 𝑥2)
𝑦3

=
(𝑥 − 0.679)(𝑥 − 1.53)

(0 − 0.679)(0 − 1.53)
× 4.560 +

(𝑥 − 0)(𝑥 − 1.53)

(0.679 − 0)(0.679 − 1.53)
× 5.00

+
(𝑥 − 0)(𝑥 − 0.679)

(1.53 − 0)(1.53 − 0.679)
× 4.09

= −
99233000

88407837
𝑥2 +

124668527

88407837
𝑥 +

114

25

= −1.12𝑥2 + 1.41𝑥 + 4.56 (2 𝑑. 𝑝. )

Therefore, the function describing the bottom section of the vase is defined as: −1.12𝑥2 +

1.41𝑥 + 4.56 

I plotted function 𝑔1(𝑥) in blue color onto the superimposed picture of vase and the result is

visible in Figure 5. Even though a miniscule part of the vase is above the function and will not 

be included in calculation of the surface area of the vase, it is insignificant and can be omitted 

because the overall fit is good. 
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Figure 5. Graph with superimposed picture of the vase and all functions 

4.2. Middle section 

In this part I will find function describing the bump in the shape of the vase that occurs on the 

right to the bottom section and should be restricted by the domain indicated by orange color in 

Figure 4. Arrangement of points resembles quartic function. Therefore, I have chosen total of 

5 points to put them in the Lagrange’s Interpolation Formula, according to the restriction, that: 

degree of polynomial ≤ (𝑛 − 1). If I have chosen smaller number of them, the resulting 

function would less accurately describe the shape because the significant points on the shape 

would not be included. 

I denotes the function representing middle section as 𝑔2(𝑥) and in order to find its equation I

will use the following points: 

Table 5. Coordinates of points: C, D, E, F, G. 

 x y 

C 1.53 4.09 

D 1.93 3.76 

Coordinates 
Point 
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E 3.19 3.84 

F 4.38 3.53 

G 5.00 3.024 

Therefore, when function 𝑔2(𝑥) passes through 5 points (1.53, 4.09), (1.93, 3.76), (3.19,

3.84), (4.38, 3.53), (5.00, 3.024) its formula is: 

𝑔2(𝑥) =
(𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥4)(𝑥 − 𝑥5)

(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)(𝑥1 − 𝑥4)(𝑥1 − 𝑥5)
𝑦1

+
(𝑥 − 𝑥1)(𝑥 − 𝑥3)(𝑥 − 𝑥4)(𝑥 − 𝑥5)

(𝑥2 − 𝑥1)(𝑥2 − 𝑥3)(𝑥2 − 𝑥4)(𝑥2 − 𝑥5)
𝑦2 + ⋯

+
(𝑥 − 𝑥1)(𝑥 − 𝑥2)(𝑥 − 𝑥3)(𝑥 − 𝑥4)

(𝑥5 − 𝑥1)(𝑥5 − 𝑥2)(𝑥5 − 𝑥3)(𝑥5 − 𝑥4)
𝑦5

=
(𝑥 − 1.93)(𝑥 − 3.19)(𝑥 − 4.38)(𝑥 − 5.00)

(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)(𝑥1 − 𝑥4)(𝑥1 − 𝑥5)
× 4.09

+
(𝑥 − 1.53)(𝑥 − 3.19)(𝑥 − 4.38)(𝑥 − 5.00)

(1.93 − 1.53)(1.93 − 3.19)(1.93 − 4.38)(1.93 − 5.00)
× 3.76 + ⋯

+
(𝑥 − 1.53)(𝑥 − 1.93)(𝑥 − 3.19)(𝑥 − 4.38)

(5.00 − 1.53)(5.00 − 1.93)(5.00 − 3.19)(5.00 − 4.39)
× 3.024

=
2527400125592500

49468115162426877
𝑥4 −

4384757980934250

5496457240269653
𝑥3

+
849984096852554171

197872460649707508
𝑥2 −

10515296051148660899

1099291448053930600
𝑥

+
3636341414946946141

323321014133509000
= 

= 0.05𝑥4 − 0.80𝑥3 + 4.30𝑥2 − 9.57𝑥 + 11.25 (2 𝑑. 𝑝. )

As such, the function representing the middle section of the vase is defined as: 0.05𝑥4 −

0.80𝑥3 + 4.30𝑥2 − 9.57𝑥 + 11.25. It is stated with two decimal places due to the uncertainty

of the measurement. 
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Then, I plotted function 𝑔2(𝑥) in green color onto the superimposed picture of the vase and the

result is presented in Figure 5. As it can be seen the function does not describe the shape 

accurately and major part of the vase is above the function. As such I wondered whether 

rounding the function to more decimal places will improve the fit. I started with 3 decimal 

places and noticed that each time rounding to one more decimal place gives better fit. I decided 

to round the function to 5 decimal places, because each next additional decimal place changes 

the curve very slightly. The improved function is presented in orange color in Figure 5. and it 

is clearly visible that the fit is far more precise. Therefore, the function describing the middle 

section is: 

𝑔2(𝑥) =
2527400125592500

49468115162426877
𝑥4 −

4384757980934250

5496457240269653
𝑥3

+
849984096852554171

197872460649707508
𝑥2 −

10515296051148660899

1099291448053930600
𝑥

+
3636341414946946141

323321014133509000

= 0.05109𝑥4 − 0.79774𝑥3 + 4.29562𝑥2 − 9.56552𝑥 + 11.24685 (5 𝑑. 𝑝. )

4.3. Top section 

It is clearly visible in Figure 4. that the top section of the vase with the domain illustrated by 

purple color can be described using linear function with constant gradient throughout, therefore 

only two points are needed to describe it. I denoted the linear function as 𝑔3(𝑥) and used the

following points to calculate it: 

Table 6. Coordinates of points: H and I 

 x y 

H 11.0 3.96 

I 17.1 4.98 

I started by calculating the gradient of function 𝑔3(𝑥):

Coordinates 
Point 
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𝑚 =
4.98 − 3.96

17.1 − 11.0

= 0.17 (2 𝑑. 𝑝. ) 

Then I substituted the coordinates of point H into the formula for the equation of a straight 

line: 

𝑦 − 𝑦1 = 𝑚(𝑥 − 𝑥1)

𝑔3(𝑥) − 3.96 = 0.17(𝑥 − 11.0)

𝑔3(𝑥) = 0.17𝑥 + 2.09 (2 𝑑. 𝑝. )

Therefore, the function describing the top section of the vase is defined as: 0.17𝑥 + 2.09 

In order to be certain of the good fit of the function 𝑔3(𝑥), I plotted it in purple color onto the

picture of vase and the result is presented in Figure 5. The fit is almost perfect and the minimal 

number of white pixels in the right part of the vase which are visible under the curve may be 

due to not ideal removal of the background in Adobe Photoshop. Therefore, I perceive the 

function describing the top section as an accurate and good representation. 

4.4. Improvements of the final function 

I noticed that when domains visible in Figure 4 are applied, there is a sharp transition 

between functions 𝑔2(𝑥) and 𝑔3(𝑥) what I depicted in Figure 6 with label “Before”. In this

part, the final function (describing the entire half of the vase) would not be continuous and if 

the volume of revolution was created there would be a sharp groove rather than smooth curve 

of the vase. Therefore, I have decided to improve the final function by changing the domains 

and will establish the new ones based on the point of intersection between functions 𝑔2(𝑥) and

𝑔3(𝑥).

To find the point of intersection, two functions are equated: 

0.05109𝑥4 − 0.79774𝑥3 + 4.29562𝑥2 − 9.56552𝑥 + 11.24685 = 0.17𝑥 + 2.09

0.05109𝑥4 − 0.79774𝑥3 + 4.29562𝑥2 − 9.73552𝑥 + 9.15685 = 0
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Then the roots are found: 

𝑥 = 5.08 𝑜𝑟 𝑥 = 6.81 (2 𝑑. 𝑝.  𝑓𝑟𝑜𝑚 𝐺𝐷𝐶) 

It is visible on Figure 5. that we consider intersection at lower x value, therefore 𝑥 = 5.08 

Figure 6. Comparison of part under investigation before and after change in domain 

Figure 6. allows to compare the area under investigation between functions 𝑔2(𝑥) and 𝑔3(𝑥)

and it is clearly visible that the domain change, labelled “After” has been beneficial, since the 

smaller part of the vase is above the functions. Moreover, two functions merge smoothly. 

To include all the functions and their domains, the function 𝑓(𝑥) describing the whole 

vase is introduced: 

𝑓(𝑥) = {
−1.12𝑥2 + 1.41𝑥 + 4.56 

0.05109𝑥4 − 0.79774𝑥3 + 4.29562𝑥2 − 9.56552𝑥 + 11.24685 
0.17𝑥 + 2.09 

 {
0 ≤ 𝑥 ≤ 1.53

1.53 ≤ 𝑥 ≤ 5.08
5.08 ≤ 𝑥 ≤ 17.1

 

5. Calculations of the lateral surface area of the vase

To find the lateral surface area of the vase, the formula for surface area of solid of revolution 

was used. The underside of the vase is not incorporated into calculations because it would not 

be painted. 

 

Before After 
Before
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5.1. Bottom section 

The function of the bottom section is: 𝑔1(𝑥) = −1.12𝑥2 + 1.41𝑥 + 4.56 and it is rotated

around x-axis in the interval [0, 1.53]. 

Firstly, it is essential to find the derivative of that function: 

𝑔1
′ (𝑥) = −2.24𝑥 + 1.41 (2 𝑑. 𝑝. ) 

Now, everything can be substituted into formula for A and obtain the surface area of the bottom 

section, denoted as Abot: 

𝐴𝑏𝑜𝑡 = ∫ 2𝜋 × (−1.12𝑥2 + 1.41𝑥 + 4.56) × √1 + (−2.24𝑥 + 1.41)2 𝑑𝑥
1.53

0

= 63.19 𝑐𝑚2 (2 𝑑. 𝑝. 𝑓𝑟𝑜𝑚 𝐺𝐷𝐶)

5.2. Middle section 

The function of the middle section is: 𝑔2(𝑥) = 0.05109𝑥4 − 0.79774𝑥3 + 4.29562𝑥2 −

9.56552𝑥 + 11.24685 and it is rotated around x-axis in the the interval [1.53, 5.08]. 

Similarly, derivative of that functions has to be found: 

𝑔2
′ (𝑥) = 0.20436𝑥3 − 2.39322𝑥2 + 8.59124𝑥 − 9.56552 (5 𝑑. 𝑝. )

Now, everything can be substituted into formula and obtain the surface area of the middle 

section, denoted as Amid: 

𝐴𝑚𝑖𝑑 = ∫ 2𝜋(0.05109𝑥4 − 0.79774𝑥3 + 4.29562𝑥2 − 9.56552𝑥
5.08

1.53

+ 11.24685 )

× √1 + (0.20436𝑥3 − 2.39322𝑥2 + 8.59124𝑥 − 9.56552)2 𝑑𝑥 

= 91.38𝑐𝑚2 (2 𝑑. 𝑝. 𝑓𝑟𝑜𝑚 𝐺𝐷𝐶)

5.3. Top section 

The function of the top section is: 𝑔3(𝑥) = 0.17𝑥 + 2.09 and it is rotated around x-axis in

the interval [5.08, 17.1]. 
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Gradient of linear function is constant, and as such it is equal to: 

𝑔3′(𝑥) = 0.17

Now, everything can be substituted into formula and obtain the surface area of the top 

section, denoted as Atop: 

𝐴𝑡𝑜𝑝 = ∫ 2𝜋 × (0.17𝑥 + 2.09) × √1 + 0.172 𝑑𝑥
17.1

5.08

= 304.54 𝑐𝑚2 (2 𝑑. 𝑝. 𝑓𝑟𝑜𝑚 𝐺𝐷𝐶)

5.4. Total outer surface area of the vase  

To find the total outer surface area of the vase, all the previously calculated surface area values 

are added, they include: bottom, middle, and top sections. 

𝐴𝑡𝑜𝑡𝑎𝑙 = 𝐴𝑏𝑜𝑡 + 𝐴𝑚𝑖𝑑 + 𝐴𝑡𝑜𝑝 = 63.19 𝑐𝑚2 + 91.38 𝑐𝑚2 + 304.54  𝑐𝑚2  

= 459.11𝑐𝑚2 (2 𝑑. 𝑝. ) 

6. Calculations of the cost of repainting

The paint coverage I assumed due to similarity to the nature of the acrylic enamel paint is 9 

m2/l. The price of the paint is 45.99£ for 18 paint tubes, each containing 5ml of paint. Firstly, 

I will determine how much paint (in litres) will be needed to cover the lateral surface of the 

vase: 

9 × 104𝑐𝑚2 − 𝑙

459.11𝑐𝑚2 − 𝑥

Therefore, the amount of paint needed is: 

𝑥 = 5.10 × 10−3𝑙 (2 𝑑. 𝑝. )

Now, I will calculate how much this amount of paint would cost me: 

45.99£ − 0.090l 

𝑥 − 5.10 × 10−3𝑙 
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Therefore, the cost of paining the lateral surface of the vase would be: 

𝑥 = 2.61£ (2 𝑑. 𝑝. ) 

7. Conclusion

The aim of my investigation has been to determine the lateral surface of the vase to calculate 

the cost of painting it with acrylic enamel and decide whether it is a viable option. In order to 

do that I extended my knowledge in calculus and derived the formula for the lateral surface 

area of the solid of revolution. Also, based on the initial measurements of the vase, I plotted 

points onto the graph to model the vase using function. Then I applied the derived formula and 

calculated that the lateral surface of the vase is 459.11𝑐𝑚2. 

Since the vase cost me 7.5£ and the potential cost of painting is 2.61£, I think that it is a viable 

option to enhance its appearance and extend its usage for approximately 35% of the initial 

price. 

Beyond estimating the price of paining the vase, I established the method to calculate the lateral 

surface area of majority of solids of revolution with relatively high accuracy. It may be useful 

in the industry sector for evaluating the costs of painting decorations on mass scale. In the next 

section I will outline which shapes cannot be used. Also, I presented how the function 

describing the desired shape can be improved.   

Moreover, I learnt the futuristic methods of visualizing mathematical functions and three-

dimensional solids using Geogebra. 

8. Evaluation

Strength associated with my work are plotting the new data points onto superimposed picture 

of the vase digitally so that the human error was decreased and accuracy was increased. Also, 

using several functions instead of one to graph the shape of the vase ensured very good fit with 

the actual shape, what is visible in Figure 5.  
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One limitation concerning my exploration is the uncertainty of the ruler used to measure 

parameters of the vase. Since its smallest division is 0.1 cm, the uncertainty is 0.05cm. Thus, 

the measurements had to be rounded to 2 decimal places and it ultimately resulted in relatively 

small accuracy of calculated lateral surface area of the vase. In order to improve it, more precise 

ruler, such as one with smallest division equal to 0.01 cm. Also, since the mean value theorem 

and intermediate value theorem have been used in deriving the formula for lateral surface area 

of solid of revolution, the function that is inserted into equation must be continuous in the 

interval [a, b] and differentiable over the interval (a, b). That implies that it cannot contain any 

discontinuities or undifferentiable intervals, for example when there is “kink” in the shape. 

Another room for error that could have contributed to inappropriately chosen points around the 

shape of the vase is human error associated with scaling and positioning the image of vase after 

initial points (based on measurements) have been plotted. Also, the long calculations involved 

in applying Lagrange’s Interpolation Formula offer high probability of human error when 

inserting the value into GDC, therefore it would be beneficial to write a code that would 

automatically calculate the equation of polynomial function. It would shorten the time needed 

for calculations, reduce the human error and facilitate calculating higher-degree polynomials 

from higher number of data points. 

9. Future suggestions

This investigation could be extended by calculating the volume of glass used to produce the 

entire vase. Then the result could be evaluated by using the water displacement method in 

which the vase would be completely submersed in water in the bucket with volume division. 

The volume of displaced water would represent the real volume of the vase. 
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